NEVARTIGE 3,5-DIARYLPYRIDONE UND IHRE STRUKTURZUORDNUNG

Hans-Joachim Knops +* und Liborius Born ++

- + Bayer AG-Forschungszentrum Aprath, D-5600 Wuppertal 1
- ++ Forschung und Entwicklung der Bayer AG, D-5090 Leverkusen Bayerwerk

<u>Summary:</u> Novel 3,5-diarylpyridones have been synthesized; their structures were determined from their characteristic spectroscopic behaviour and confirmed by X-ray crystallographic studies.

Im Rahmen der Untersuchungen über N-Heterocyclen interessierte uns die Synthese von in 2-Position halogenierten, unsymmetrisch substituierten 1-Alkyl-3,5-diaryl-4-(1H)-pyridonen <u>4</u>. Geeignete Ausgangsmaterialien sind entsprechende bisher unbekannte 3,5-bisarylierte Hydroxypyridone <u>3</u>, die sich in relativ guten Ausbeuten durch Umsetzung von \mathcal{B} -Methylamino- α -phenylacrylsäureestern¹⁾ <u>1</u> mit Phenylessigsäureestern <u>2</u> in Gegenwart von Alkalihydriden herstellen lassen. Durch Variation der Substituenten R¹ und R² lassen sich beliebige Substituentenmuster für <u>3</u> erzeugen, Schema 1:

Schema 1

Umsetzungen bisher bekannter Hydroxypyridone und -chinolone mit Phosphorhalogeniden oder -oxyhalogeniden führen unter Dealkylierung zu dihalogenierten Pyridinen bzw. Chinolinen^{2,3)}, jedoch lassen sich unter schonenden Bedingungen und rechtzeitigem Abbruch der Reaktion nach säulenchromatographischer Aufarbeitung des Reaktionsgemisches (Cyclohexan/Essigester 1:1, Kieselgel 60, Merck 7734) die Pyridone <u>4</u> und <u>5</u> als Zwischenprodukte neben bereits entstandenem dihalogeniertem Pyridin <u>6</u> isolieren, Schema 2, Tabelle 1. Schema 2

6

Tabelle l

Verb	indung	R1	R ²	Fp[°C]
4	a	н	3-CF 3	188-9
	b	3-CF3	н	156-8
	<u>c</u>	Н	н	150
5	a	н	3CF 3	119-21
	<u>b</u>	3-CF 3	н	127-9
	<u>c</u>	н	н	155
<u>6</u>	a	Н	3CF ₃	93-5
	p	3-CF 3	Н	129-31
	<u>c</u>	Н	Н	102-4

Bei der Zuordnung der Strukturen der Pyridone <u>4</u> und <u>5</u> anhand ihrer spektroskopischen Eigenschaften ließ sich nach vorliegenden Literaturangaben^{4,5)} keine eindeutige Entscheidung treffen. Erst die Röntgenstrukturanalyse bewies die mittels empirischer Analogie durch IR^{6} - und ¹H-NMR-Spektren⁷⁾ mögliche Unterscheidung zwischen 2- und 4-Pyridonen. Hiernach konnte die Behauptung Katritzky's⁶⁾ bestätigt werden, wonach die IR-Absorptionsbande der Carbonylgruppe N-substituierter 4-Pyridone unterhalb 1600 cm⁻¹ zu beobachten ist. Die UV-Spektren weisen ebenfalls charakteristische, aber von ^{5d,e)} abweichende Unterschiede zwischen beiden Pyridon-Typen auf (s. Tabelle 2 und Abbildungen 1,2).

Abbildung l zeigt die charakteristischen Unterschiede der entsprechenden 2- und 4-Pyridone am Beispiel <u>a</u>. Im IR-Spektrum kehren sich die Lage und Intensität der Banden bei ~ 1640 cm⁻¹ und 1560-1600 cm⁻¹ um; im UV-Spektrum erscheint das Maximum bei ~ 240 nm bei den 2-Pyridonen als Schulter.

Tabelle 2

Verbindung	IR (KBr, cm ⁻	1) 1H-NMR/CDC1 ₃	UV (CH ₃ OH) A max (nm)
	२ с≈० २с≈с	CH3(ppm) TMS	E max
<u>4 a</u>	1570 163	D 3,92	205,3 / 238,7 / 285,5 32 787 /27 150 /11 501
<u>b</u>	1560 163	D 3,95	
<u>c</u>	1570 163	0 3,92	205,9 / 238,4 / 283,5 31 015 /25 643 /12 302

<u>5 a</u>	1645	1600	3,60	209,5 / 233 / 323
				32 998 /17 749 / 7687
b	1645	1600	3,60	206,5 / 250 / 318,5
				27 277 / 9898 / 6921
<u>c</u>	1640	1595	3,57	208,1 / 241,1 / 322,0
				29 925 /13 961 / 7446

Abbilduna 2

Umgezeichnetes ORTEP-Plotterbild von 4 a.

Der Pyridonring liegt in der Papierebene. Die größte Abweichung der Pyridonatome aus der Ringebene beträgt 0,004 A. Der Ring mit der CF₃-Gruppe ist um 72,0°, der andere Phenylring nur um 48,7° gegen den Pyridonring verkippt.

Umgezeichnetes ORTEP-Plotterbild von 5 c.

Der Pyridonring liegt in der Papierebene. Die größte Abweichung der Pyridonatome aus der Ringebene beträgt 0,002 A. Die Winkel zwischen der Pyridonebene und den Ebenen der Phenylringe lauten 70,5° (Ring A) und 60.0° (Ring B).

Herrn Prof. Dr. Otto Bayer in memoriam gewidmet.

Literatur

- 1) Analog zu WISLICENUS Liebigs Ann. Chem. 291, 147/202 (1896) 413, 206 (1917). In einer Eintopfreaktion wird NH₂CH₃xHCl in H₂O zum Na-Salz des Formylphenylessigesters gegeben.
- 2) Houben-Weyl Bd.5, Teil 3, 760-960, Teil 4, 387-412.
- 3) E. Klingsberg, R.A. Abramovitch 'Pyridine and its Derivatives' Teil 3, Interscience Publishers, John Wiley and Sons, (1962), S. 509ff (1974), S. 597ff.
- 4) wie 3) 1974, S. 731ff und dort zitierte Literatur.
- 5) a) H.M. Feid-Allah, Pharmazie 36(10), 672 (1981) b) El-Kohly et al., J. Heterocycl. Chem. 1974, 487; 1973, 665 c) R.F. Abdulla et al., Synth. Comm. 7 (4), 305 (1977) d) Ch. Wang, J. Heterocycl. Chem. 1970, 389 e) H.J. Den Heztog, D.J. Buurman, <u>Recueil d. Trav. P.B. 75</u>, 257 (1956).
- 6) A.R. Katritzky, R.A. Jones, <u>J. Chem. Soc. 1960</u>, 2947. 7) U. Vögeli, W.v. Phil ipsborn, <u>Organic Magn. Resonance</u> <u>5</u> (12), 531 (1973).

(Received in Germany 16 April 1983)